ARDEN'S THEOREM FOR REGULAR EXPRESSIONS

Image
    Identities for Regular Expression:- Given R, P, L, Q as regular expressions, the following identities hold − ∅* = ε ε* = ε RR* = R*R R*R* = R* (R*)* = R* RR* = R*R (PQ)*P =P(QP)* (a+b)* = (a*b*)* = (a*+b*)* = (a+b*)* = a*(ba*)* R + ∅ = ∅ + R = R   (The identity for union) R ε = ε R = R   (The identity for concatenation) ∅ L = L ∅ = ∅   (The annihilator for concatenation) R + R = R   (Idempotent law) L (M + N) = LM + LN   (Left distributive law) (M + N) L = ML + NL   (Right distributive law) ε + RR* = ε + R*R = R* Arden's Theorem:- In order to find out a regular expression of a Finite Automaton, we use Arden’s Theorem along with the properties of regular expressions. Statement  − Let  P  and  Q  be two regular expressions. If  P  does not contain null string, then  R = Q + RP  has a unique solution that is  R = QP* Proof  − R = Q + (Q + RP)P  [After putting the value R = Q + RP] = Q + QP + RPP When we put the value of  R  recursively again and again, we get the following equatio

About Us

 

Hello Reader, Welcome to my Blog. This Blog is all about Cafe Foods and their types. You will get full insights of benefits and makings of the beverages. I hope you will enjoy the Blog.

Author : Mohit

Contact No. 7976933871

Contact Mail:- mohitbhatia208@gmail.com

Comments

Popular posts from this blog

PIGEONHOLE PRINCIPLE AND APPLICATIONS OF PUMPING LEMMA

ARDEN'S THEOREM FOR REGULAR EXPRESSIONS

EQUIVALENCE OF TWO FINITE AUTOMATAs